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Abstract. Recently, making decisions and analyzing data are getting more and more attention by taking advantage of
rough set and intuitionistic fuzzy set theories. Additionally, it can be found that many works have been developed about
intuitionistic fuzzy rough set approaches from different viewpoints. In this article, we introduce similarity degrees and four
kinds of uncertainty measurement, called θ-conditional entropies, θ-similarity intuitionistic fuzzy accuracies, θ-similarity
intuitionistic fuzzy roughness and θ-rough decision entropies in intuitionistic fuzzy decision tables. Also, we provide a novel
method for classifying the objects’ intuitionistic fuzzy decision table. Moreover, we carefully discuss the lower approximation
and upper approximation of a given set and classify their important properties based on the novel classes in the intuitionistic
fuzzy decision table. Furthermore, an illustrated example is employed to demonstrate the conceptual arguments of these
measurements based on different similarity degrees and similarity rates. From this, it can be found that the new measures are
superior to the classical accuracy and roughness, and the method is valuable and useful in real life situations.
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1. Introduction

Pawlak proposed the rough set theory [4]. This
theory is a development of the classical set. Now,
approximations may be generalized by making use
of non-equivalence relations [16]. More and more
success can be obtained in knowledge acquisition
and reasoning in incomplete information systems
by using the extensions of the traditional rough set
mode. However, it is common to meet data with
fuzzy values in real life. So, fuzzy set theory was
proposed by Zadeh, which is commonly made use
of when describing quantitative data expressed and
membership functions in linguistic terms and intel-
ligent information systems. Many researchers have
extended rough set theory to fuzzy situations. Some
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achievements of these studies have moved to the
introductions of concepts combining fuzzy rough sets
and rough fuzzy sets.

Uncertainty measures are very important in rough
set theory nowadays. In general, researchers apply
roughness to accurately evaluate the uncertainty of
some sets. However, they are not very useful to char-
acterize the uncertainty of a given table. These two
kinds of measures are both based on a pair of approx-
imations, which are lower approximation and upper
approximation. Entropy theory is a highly helpful tool
for representing information contents from different
formats and has been applied in many areas.

Many excellent achievements regarding entropy
and uncertainty measures have been received. Many
measures-based information theories have been pre-
sented and applied to quantify relationships between
attributes and the importance of attributes in vari-
ous fields. Yao [19] studied approximation structures
and hierarchical granulation, and obtained some
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important results in a stratified rough set model. Liang
et al. [7] proposed an axiomatic formal about knowl-
edge granulation for an information system. Xu et al.
[17] investigated the definitions and some important
properties of knowledge uncertainty measures and
information entropy in ordered information systems.

In the real world, some attribute values are pairs of
fuzzy values for an object. For this reason, Atanassov
[8] first proposed the intuitionistic fuzzy set model
in 1986, which is very effective when handling
vagueness. Moreover, this theory is of great help to
perform research into uncertainty theories. In fact,
the intuitionistic fuzzy set model can be seen as a
development of the classical fuzzy set by introducing
non-membership and membership [12, 15]. Clearly,
from the point of representing the indistinctions about
some information, an intuitionistic fuzzy set model is
more precise than traditional fuzzy set theory. Hence,
it is a novel model to discuss uncertain information by
integrating rough set theory with intuitionistic fuzzy
set theory. This has come to be an interesting topic,
and some achievements can be found in recent liter-
ature [1, 4, 13, 21].

Associated with intuitionistic fuzzy set theory [7,
14], the application fields of rough set theory have
become more and more wide. For example, Zhou
et al. [9] studied the rough approximation properties
of Atanassov IF sets in fuzzy and crisp approxima-
tion spaces in which both axiomatic and constructive
approaches are considered. Zhang et al. [18] pro-
vided a new notion of intuitionistic fuzzy rough
sets by analyzing their important properties based
on general binary relations, implication operators,
and two universes. The interval-valued intuitionis-
tic fuzzy rough approach is proposed by combing
rough set theory with the interval-valued intuition-
istic fuzzy set [20]. What’s more, Xu [23] explored
the similarity measures of the intuitionistic fuzzy set.
Also, the intuitionistic fuzzy set model has recently
become more and more important in dealing with
uncertain problems. In intuitionistic fuzzy informa-
tion systems, research about classifying objects based
on the similarity degree is hard to find, and this issue is
very important in dealing with data and information.

The structure of this article is arranged as fol-
lows. Firstly, in Section 2, we review some necessary
and basic notations of rough set and intuitionis-
tic fuzzy set models. In Section 3, six kinds of
similarity degrees are considered, and the lower
approximation and upper approximation of a given
set are discussed based on the new similarity classes.
Furthermore, we also explore their properties. In

Section 4, some basic concepts and properties of
uncertainty measurement in intuitionistic fuzzy deci-
sion tables, including θ-similarity intuitionistic fuzzy
accuracies, θ-similarity intuitionistic fuzzy rough-
ness, θ-conditional entropies, and θ-rough decision
entropies are investigated. In section 5, we give a
comparison with clustering methods. What’s more,
some experiments are studied to verify the effective-
ness of the considered measures in section 6. Lastly,
we conclude the article by providing a summary and
giving ideas for further research work.

2. Preliminary

According to their attribute values, the concept
of the information table presents a handy tool in
describing objects. Generally, an information table
is an ordinal triple I = (U, A, f ), in which U is the
objects set (a non-empty finite set), A is a condi-
tional attribute set and f is the relationship between
U and A. With respect to equivalence relation RA

induced by attribute set A, the Pawlak’s classical
lower approximation and upper approximation of X

can be found as follows [22].

RA(X) = {u ∈ U|[u]A ∩ X /= ∅}
RA(X) = {u ∈ U|[u]A ⊆ X}.

where [u]A is an equivalence class of u onto RA. The
set X is called a definable set if and only if RA(X) =
RA(X), Otherwise, set X is referenced as a rough
set.

Intuitionistic fuzzy set theory has had a great effect
on uncertainty theories. In the next section, the nec-
essary notions about intuitionistic fuzzy sets will be
recalled.

Definition 1. (See [8]) Let U be a universe (a non-
empty finite set). An IF (intuitionistic fuzzy set) Ã on
U is an object having the following property:

Ã = {< u, μfÃ(u), νfÃ(u) > |u ∈ U}.
where νfÃ : U → [0, 1] and μfÃ : U → [0, 1] sat-
isfy 0 ≤ μfÃ(u) + νfÃ(u) ≤ 1 for all u ∈ U.

The functions νfÃ(u) and μfÃ(u) are, respectively,
called the degrees of non-membership and member-
ship of the element u ∈ U to Ã [8].

The degrees of membership and non-membership
of object u in IF (intuitionistic fuzzy set) set Ã are
a pair (μfÃ(u), νfÃ(u)), and the hesitancy degree
of u is πfÃ(u) = 1 − μfÃ(u) − νfÃ(u). Thus, the
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maximal possible degree of membership of u is
μfÃ(u) + πfÃ(u) + νfÃ(u) = 1. Thus, the possible
degree of membership can also be presented in the
form of interval [μfÃ(u), 1 − νfÃ(u)].

So, ϕf (u) = μfÃ(u)+1−νfÃ(u)
2 can be called the

mean degree of membership.
Let IF (U) denote the family of all IFs on U.
Let I = (U, A ∪ {d}) denote an intuitionistic fuzzy

decision table (IFDT), where U is a domain (a non-
empty finite set), A is a condition attributes set (a
non-empty finite set) and d is a class label or decision
attribute. For any ak ∈ A, the pair (μfak

(ui), νfak
(ui))

stands for the degrees of membership and non-
membership of object ui on attribute ak. Also,

πfak
(ui) = 1 − μfak

(ui) − νfak
(ui) (1)

gives the hesitancy degree of object ui on attribute
ak. Moreover,

ϕfak
(ui) = μfak

(ui) + 1 − νfak
(ui)

2
(2)

expresses the degree of membership of object ui on
attribute ak.

3. IFDT similarity degrees

For an intuitionistic fuzzy decision table, an object
has degrees of membership and non-membership
based on a particular attribute, so it is very difficult
to classify the object. The similarity degree provides
a good tool for this work.

In order to measure the similarity degree between
two IFs Ã1, Ã2 on U, Fan [5] has provided the fol-
lowing general expression:

T (Ã1, Ã2)

= 1

n

n∑
i=1

(1 − w1
∣∣μfÃ1

(ui) − μfÃ2
(ui)
∣∣

−w2
∣∣νfÃ1

(ui) − νfÃ2
(ui)
∣∣

−w3
∣∣πfÃ1

(ui) − πfÃ2
(ui)
∣∣

−w4
∣∣ϕfÃ1

(ui) − ϕfÃ2
(ui)
∣∣),

where w1, w2, w3, w4 are the importance degree of
each index, and they all satisfy the similarity degree
T (Ã1, Ã2) ≥ 0.

Case 1: If we let w1 = w2 = w3 = 0, w4 = 1 and
pay close attention to the mean degree of member-
ship, then we can gain the similarity degree [11] of
Ã1, Ã2 as follows:

T1(Ã1, Ã2) = 1

n

n∑
i=1

(1 − ∣∣ϕfÃ1
(ui) − ϕfÃ2

(ui)
∣∣).

Case 2: If we let w1 = w2 = 1
2 , w3 = w4 = 0 and

mainly focus on the degrees of non-membership and
membership, then we can obtain the similarity degree
[2] of Ã1, Ã2 as follows:

T2(Ã1, Ã2) = 1

n

n∑
i=1

(
1 −

∣∣μfÃ1
(ui) − μfÃ2

(ui)
∣∣+ ∣∣νfÃ1

(ui) − νfÃ2
(ui)
∣∣

2

)

Case 3: If we let w1 = w2 = 1
4 , w3 = 1

2 , w4 = 0 and
primarily emphasize the mean degree of membership
based on the degrees of non-membership and mem-
bership, then we can obtain the similarity degree [3]
of Ã1, Ã2 as follows:

T3(Ã1, Ã2) = T1(Ã1, Ã2) + T2(Ã1, Ã2)

2

= 1

n

n∑
i=1

(
1 −

∣∣μfÃ1
(ui) − μfÃ2

(ui)
∣∣+ ∣∣νfÃ1

(ui) − νfÃ2
(ui)
∣∣

4
−
∣∣ϕfÃ1

(ui) − ϕfÃ2
(ui)
∣∣

2

)

Case 4: If we let w1 = w2 = w3 = 1
3 , w4 = 0 and

treat the mean degree of membership and the degrees
of non-membership and membership equally, then we
can acquire the similarity degree [5] of Ã1, Ã2 as
follows:

T4(Ã1, Ã2)

= 1

n

n∑
i=1

(1 − 1

3
(
∣∣μfÃ1

(ui) − μfÃ2
(ui)
∣∣

+ ∣∣νfÃ1
(ui) − νfÃ2

(ui)
∣∣ ∣∣ϕfÃ1

(ui) − ϕfÃ2
(ui)
∣∣))

Case 5: If we let w1 = w2 = w3 = w4 = 1
3 and con-

sider that every degree is important, then we can
achieve the similarity degree [5] of Ã1, Ã2 as follows:

T5(Ã1, Ã2) = 1

n

n∑
i=1

(1−1

3
(
∣∣μfÃ1

(ui) − μfÃ2
(ui)
∣∣
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+ ∣∣νfÃ1
(ui) − νfÃ2

(ui)
∣∣+ ∣∣πfÃ1

(ui) − πfÃ2
(ui)
∣∣

+ ∣∣ϕfÃ1
(ui) − ϕfÃ2

(ui)
∣∣))

Case 6: If we let w1 = w2 = w3 = 1
4 , w4 = 1

2 and
take all degrees into account, but focus more on the
mean degree of membership, then we can get the
similarity degree [6] of Ã1, Ã2 as follows:

T6(Ã1, Ã2)

= 1

n

n∑
i=1

(
1 − 1

4
(
∣∣μfÃ1

(ui) − μfÃ2
(ui)
∣∣

+ ∣∣νfÃ1
(ui) − νfÃ2

(ui)
∣∣

+ ∣∣πfÃ1
(ui) − πfÃ2

(ui)
∣∣)

−
∣∣ϕfÃ1

(ui) − ϕfÃ2
(ui)
∣∣

2

)

In the next definition, we will consider similar-
ity classes based on the similarity degrees instead of
intuitionistic fuzzy equivalence classes. Hence, we
can get the similarity degree between xi, xj on an
attribute ak in IFDT by the following.

Definition 2. Let I = (U, A1 ∪ {d}) be an intuition-
istic fuzzy decision table. For any attribute ak ∈ A1,
the similarity degrees between ui, uj on an attribute
ak can be denoted by the following.

t
ak

1ij = 1 − ∣∣ϕfak
(ui) − ϕfak

(uj)
∣∣ ,

t
ak

2ij = 1 −
∣∣μfak

(ui) − μfak
(uj)

∣∣+ ∣∣νfak
(ui) − νfak

(uj)
∣∣

2
,

t
ak

3ij = 1 − 1

4
(
∣∣μfak

(ui) − μfak
(uj)

∣∣
+ ∣∣νfak

(ui) − νfak
(uj)

∣∣) − 1

2
(
∣∣ϕfak

(ui) − ϕfak
(uj)

∣∣),
t
ak

4ij = 1 − 1

3
(
∣∣μfak

(ui) − μfak
(uj)

∣∣
+ ∣∣νfak

(ui) − νfak
(uj)

∣∣+ ∣∣ϕfak
(ui) − ϕfak

(uj)
∣∣),

t
ak

5ij = 1 − 1

3
(
∣∣μfak

(ui) − μfak
(uj)

∣∣+ ∣∣νfak
(ui) − νfak

(uj)
∣∣

+ ∣∣πfak
(ui) − πfak

(uj)
∣∣+ ∣∣ϕfak

(ui) − ϕfak
(uj)

∣∣),
t
ak

6ij = 1 − 1

4
(
∣∣μfak

(ui) − μfak
(uj)

∣∣+ ∣∣νfak
(ui) − νfak

(uj)
∣∣

+ ∣∣πfak
(ui) − πfak

(uj)
∣∣) − 1

2
(
∣∣ϕfak

(ui) − ϕfak
(uj)

∣∣)

Definition 3. For an intuitionistic fuzzy decision table
I = (U, A1 ∪ {d}), A2 ⊆ A1 and a similarity rate θ ∈
[0, 1], the θ-similarity class of an object ui ∈ U is
defined as

T θ
lA2

(ui) = {uj|tak

lij ≥ θ, ∀ak ∈ A2, uj ∈ U}, l =
1, . . . , 6. If uj ∈ T θ

lA2
(ui), it can be found that the

similarity degree of ui and uj according to any
attribute in A2 is not less than the given θ. That is
to say, T θ

lA2
(ui) is the set of objects. This set can be

indiscernible with the object ui under the similarity
rate θ associated with the attribute set A2. In general,
θ is the given similarity rate for an intuitionistic
fuzzy decision table. The new similarity relation is
denoted by T θ

lA2
.

Definition 4. Let I = (U, A1 ∪ {d}) be an intuitionis-
tic fuzzy decision table. A2 ⊆ A1, X ⊆ U, the upper
approximation and lower approximation of Xon A2,
are described as follows:

T θ
lA2

(X) = {u ∈ U|T θ
lA2

(u) ∩ X /= ∅};
T θ

lA2
(X) = {u ∈ U|T θ

lA2
(u) ⊆ X}.

(l = 1, 2, 3, 4, 5, 6).

where T θ
lA2

(X) and T θ
lA2

(X) are known as the

θ-similarity approximation operators in the intuition-

istic fuzzy decision table. If T θ
lA2

(X) = T θ
lA2

(X), then

the set X is a definable set. Otherwise, the set X is a
rough set with respect to A2 in IFDT.
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Theorem 1. Let I = (U, A1 ∪ {d}) be an intuition-
istic fuzzy decision table. X, Y ⊆ U, A2 ⊆ A1, l =
1, . . . , 6, the following properties hold.

(1) T θ
lA2

(X) ⊆ X ⊆ T θ
lA2

(X),

(2) T θ
lA2

(X) = T θ
lA2

(X) , T θ
lA2

(X) = T θ
lA2

(X),

(3) T θ
lA2

(∅) = T θ
lA2

(∅) = ∅, T θ
lA2

(U) =
T θ

lA2
(U) = U,

(4)
T θ

lA2
(X ∩ Y ) = T θ

lA2
(X) ∩ T θ

lA2
(Y ),

T θ
lA2

(X ∪ Y ) = T θ
lA2

(X) ∪ T θ
lA2

(Y ),

(5)
T θ

lA2
(X ∩ Y ) ⊆ T θ

lA2
(X) ∩ T θ

lA2
(Y ),

T θ
lA2

(X ∪ Y ) ⊇ T θ
lA2

(X) ∪ T θ
lA2

(Y ),

(6) X ⊆ Y ⇒ T θ
lA2

(X) ⊆ T θ
lA2

(Y ),

T θ
lA2

(X) ⊆ T θ
lA2

(Y ),

(7) T θ
lA2

(
T θ

lA2
(X)
)

= T θ
lA2

(X),

T θ
lA2

(
T θ

lA2
(X)
)

= T θ
lA2

(X).

Proof. These properties can be acquired directly by
Definition 4.

In the next theorem, a partial order can be obtained
on all the similarity relations on U in an intuitionistic
fuzzy decision table.

Theorem 2. Let I = (U, A1 ∪ {d}) be an intuition-
istic fuzzy decision table. If A2, A3 ⊆ A1, A3 ⊆
A2, ui ∈ U, then the following property can be
obtained:

T θ
lA2

(ui) ⊆ T θ
lA3

(ui), l = 1, 2, 3, 4, 5, 6.

Proof. Specially, two special similarity relations can
be found directly.

(1) T θ
lA2

(ui) = {ui}, then this is the finest relation.

(2) T θ
lA2

(ui) = U, then this is the coarsest relation.

Theorem 3. For an intuitionistic fuzzy decision table
I = (U, A1 ∪ {d}), if A2 ⊆ A1, 0 ≤ λ ≤ θ ≤ 1, then
we can have:

T θ
lA2

(ui) ⊆ T λ
lA2

(ui), l = 1, 2, 3, 4, 5, 6.

Additionally, we can also obtain T θ
lA2

(ui) =⋂
ak∈A2

T θ
l{ak}(ui). Furthermore, T θ

lA2
(ui) /= ∅ and⋃

ui∈U

T θ
lA2

(ui) = U.

Definition 5. For an intuitionistic fuzzy decision table
I = (U, A1 ∪ {d}), the decision class of an object
ui ∈ U is denoted as

D(ui) = {uj|d(ui) = d(uj)} (uj ∈ U).

Let U
/
d denote the partition induced by the deci-

sion attribute d.
The uncertainty measures will be discussed in the

intuitionistic fuzzy decision table in the next section.
In order to measure the uncertainty of an intuitionis-
tic fuzzy decision table, we mainly use θ-conditional
entropy, θ-similarity intuitionistic fuzzy accuracy, θ-
similarity intuitionistic fuzzy roughness, and θ-rough
decision entropy.

4. Some uncertainty measures in IFDT

Definition 6. For an intuitionistic fuzzy decision table
I = (U, A1 ∪ {d}), the θ-conditional entropy of d on
the attribute set A2 is defined by the following.

Hθ
lT (d|A2)

= −
|U|∑
i=1

|U/d|∑
j=1

∣∣∣T θ
lA2

(ui) ∩ Dj

∣∣∣
|U|2 log2

∣∣∣T θ
lA2

(ui) ∩ Dj

∣∣∣∣∣∣T θ
lA2

(ui)
∣∣∣

l = 1, . . . , 6

Theorem 4. For an intuitionistic fuzzy decision table
I = (U, A1 ∪ {d}), and A2, A3 ⊆ A1: If ∀ui ∈ U,

T θ
lA2

(ui) = T θ
lA3

(ui), then

Hθ
lT (d|A2) = Hθ

lT (d|A3) (i = 1, 2, 3, 4, 5, 6) .

Proof. Proof can be found in Definition 6.

Theorem 5. For an intuitionistic fuzzy decision table
I = (U, A1 ∪ {d}), if A3 ⊆ A2 ⊆ A1, then we have
Hθ

lT (d|A2) ≤ Hθ
lT (d|A3) (i = 1, 2, 3, 4, 5, 6) .

Theorem 6. For an intuitionistic fuzzy decision table
I = (U, A1 ∪ {d}), and A2 ⊆ A1 are two attribute
sets, log |U| is the maximum conditional entropy of d

with reference to A2. Also,

Hθ
lT (d|A2) = log2 |U| (l = 1, 2, 3, 4, 5, 6)

only if for any u ∈ U, T θ
lA2

(ui) = U, and for any Dj ∈
U
/
d,
∣∣Dj

∣∣ = 1.

Theorem 7. For an intuitionistic fuzzy decision
table I = (U, A1 ∪ {d}), and when A2 ⊆ A1 are two
attribute sets, 0 is the minimum conditional entropy
of d with reference to A2. Also, Hθ

lT (d|A2) = 0
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(l = 1, . . . , 6) if and only if T θ
lA2

(ui) ⊆ D(ui) for all
ui ∈ U.

Theorem 8. For intuitionistic fuzzy decision table
I = (U, A1 ∪ {d}) and A2 ⊆ A1, if 0 ≤ θ1 ≤ θ2 ≤ 1,
then we have

H
θ2
lT (d|A2) ≤ H

θ1
lT (d|A2).

In rough set theory, uncertainty measure is a hot
topic nowadays. When classifying objects under the
given attribute subset, the percentage of possible pre-
cise decision can be shown by the approximation
accuracy. Also, an intuitionistic fuzzy decision table
can be extended by making use of the operators of
lower approximation and upper approximation.

Definition 7. For an intuitionistic fuzzy decision table
I = (U, A1 ∪ {d}), and A2 ⊆ A1, the θ-similarity
intuitionistic fuzzy accuracy and roughness with
respect to decision attribute d can be described as
follows.

αθ
lA2

(U
/
d) =

∑
Di∈U/d

∣∣∣T θ
lA2

(Di)
∣∣∣∑

Di∈U/d

∣∣∣T θ
lA2

(Di)
∣∣∣

(l = 1, . . . , 6) ,

ρθ
lA2

(U
/
d) = 1 −

∑
Di∈U/d

∣∣∣T θ
lA2

(Di)
∣∣∣∑

Di∈U/d

∣∣∣T θ
lA2

(Di)
∣∣∣

(l = 1, . . . , 6).

Theorem 9. For an intuitionistic fuzzy decision table
I = (U, A1 ∪ {d}), and A3 ⊆ A2 ⊆ A1, with a given
similarity rate θ, then

αθ
lA2

(U
/
d) ≥ αθ

lA3
(U
/
d) (l = 1, 2, 3, 4, 5, 6),

ρθ
lA2

(U
/
d) ≤ ρθ

lA3
(U
/
d) (l = 1, 2, 3, 4, 5, 6),

However, the θ-similarity intuitionistic fuzzy accu-
racy and roughness can’t satisfy the needs of the
reality in some cases. Thus, new measures are
required. In this paper, in order to measure the preci-
sion of classification more effectively, we propose a
new concept denoted θ-rough decision entropy with
respect to the intuitionistic fuzzy decision table as an
improved version of θ-similarity intuitionistic fuzzy
accuracy and roughness.

Definition 8. For an intuitionistic fuzzy decision table
I = (U, A1 ∪ {d}), and A2 ⊆ A1, and a given sim-
ilarity rate θ, the θ-rough decision entropy in the
intuitionistic fuzzy decision table is found by:

DEθ
l (A2) = ρθ

lA2
(U
/
d)Hθ

lT (d|A2).

Theorem 10. For an intuitionistic fuzzy decision
table I = (U, A1 ∪ {d}), and A3 ⊆ A2 ⊆ A1, then
DEθ

l (A2) ≤ DEθ
l (A3).

From the above theorem, it can be concluded that
the θ-rough decision entropy with respect to the
intuitionistic fuzzy decision table decreases as A2
becomes finer.

Note: The relationship between the four measures we
have mentioned is as follows.

Case 1: The relationship between θ-similarity intu-
itionistic fuzzy accuracy and roughness with respect
to decision attribute d.

αθ
lA2

(U
/
d) = 1 − ρθ

lA2
(U
/
d),

ρθ
lA2

(U
/
d) = 1 − αθ

lA2
(U
/
d)

Case 2: The relationship between θ-similarity intu-
itionistic fuzzy accuracy and θ-rough decision
entropy.

DEθ
l (A2) = (1 − αθ

lA2
(U
/
d))Hθ

lT (d|A2)

Case 3: The relationship between θ-conditional
entropy and θ-rough decision entropy.

As ρθ
lA2

(U
/
d) = 1, in other words,

αθ
lA2

(U
/
d) = 0, we have

DEθ
l (A2) = Hθ

lT (d|A2)

5. Comparison

In the next section, we will compare the proposed
intuitionistic fuzzy clustering method with the exist-
ing methods. In order to facilitate comparison, the
data in Table 1 are used to classify. There are 8 con-
dition attributes and 20 objects in the intuitionistic
fuzzy decision table shown in Table 1.

We put forward six kinds of similarity, which give
six kinds of classification results. Take the first case as
an example. Let θ = 0.6, A2 = A1, the classification
results are as follows:

T θ
1A1

(u1) = {u1, u3, u4, u6, u7, u10, u15, u18};
T θ

1A1
(u2) = {u2}; T θ

1A1
(u3)

= {u1, u3, u6, u8, u9};
T θ

1A1
(u4) = {u4}; T θ

1A1
(u5) = {u5};

T θ
1A1

(u6) = {u6, u7};
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Table 1
An intuitionistic fuzzy decision table

U a1 a2 a3 a4 a5 a6 a7 a8 d

x1 (0.8,0.2) (0.2,0.7) (0.3,0.6) (0.5,0.5) (0.1,0.9) (0.2,0.5) (0.8,0.1) (0.6,0.3) 1
x2 (0.5,0.3) (0.2,0.7) (0.8,0.1) (0.2,0.5) (0.6,0.3) (0.4,0.5) (0.2,0.3) (1.0,0.0) 3
x3 (1.0,0.0) (0.3,0.6) (0.6,0.2) (0.3,0.3) (0.3,0.5) (0.8,0.1) (0.3,0.4) (0.6,0.3) 3
x4 (0.6,0.3) (0.1,0.8) (0.7,0.1) (0.6,0.3) (0.6,0.3) (0.6,0.3) (0.4,0.4) (0.3,0.7) 3
x5 (0.8,0.2) (0.4,0.5) (0.8,0.0) (0.3,0.4) (0.6,0.4) (0.7,0.2) (0.4,0.2) (0.2,0.8) 4
x6 (0.8,0.1) (0.1,0.8) (0.7,0.1) (0.2,0.4) (0.5,0.3) (0.4,0.3) (0.8,0.2) (0.1,0.8) 4
x7 (0.7,0.1) (0.7,0.1) (0.0,0.9) (0.5,0.4) (0.5,0.1) (0.1,0.7) (0.5,0.4) (0.2,0.8) 3
x8 (0.9,0.0) (0.6,0.3) (0.2,0.6) (0.3,0.5) (0.8,0.2) (0.7,0.2) (0.6,0.3) (0.3,0.7) 3
x9 (0.1,0.8) (0.3,0.6) (0.1,0.8) (0.5,0.4) (0.8,0.1) (0.6,0.3) (0.7,0.2) (0.7,0.3) 4
x10 (0.5,0.4) (0.1,0.7) (0.1,0.8) (0.1,0.4) (0.4,0.3) (0.9,0.1) (0.2,0.1) (0.6,0.4) 3
x11 (0.2,0.8) (0.8,0.2) (0.7,0.2) (0.4,0.5) (0.4,0.2) (0.8,0.2) (0.4,0.3) (0.5,0.5) 4
x12 (0.7,0.1) (0.2,0.8) (0.8,0.1) (0.4,0.6) (0.6,0.3) (0.4,0.6) (0.2,0.4) (0.4,0.6) 2
x13 (0.6,0.3) (0.5,0.4) (0.9,0.0) (0.6,0.3) (0.3,0.6) (0.5,0.3) (0.6,0.3) (0.5,0.3) 2
x14 (0.7,0.1) (0.2,0.8) (0.7,0.2) (0.4,0.5) (0.2,0.7) (0.2,0.8) (0.3,0.6) (0.3,0.7) 2
x15 (0.4,0.5) (0.2,0.7) (0.9,0.0) (0.3,0.5) (0.6,0.4) (0.3,0.7) (0.9,0.1) (0.6,0.4) 4
x16 (0.1,0.8) (0.6,0.3) (0.6,0.2) (0.3,0.7) (0.5,0.3) (0.6,0.4) (0.8,0.1) (0.6,0.3) 3
x17 (0.8,0.1) (0.5,0.1) (0.8,0.1) (0.1,0.9) (0.2,0.4) (0.4,0.5) (0.7,0.3) (0.3,0.7) 3
x18 (0.2,0.5) (0.6,0.3) (0.8,0.1) (0.9,0.1) (0.3,0.7) (0.6,0.4) (0.6,0.4) (0.8,0.2) 4
x19 (0.3,0.4) (0.1,0.9) (0.7,0.2) (0.6,0.2) (0.3,0.4) (0.2,0.5) (0.5,0.5) (0.5,0.2) 1
x20 (0.6,0.3) (0.2,0.8) (0.8,0.1) (0.7,0.1) (0.5,0.4) (0.5,0.2) (0.3,0.7) (0.3,0.6) 3

T θ
1A1

(u7) = {u6, u7, u13, u14, u19};
T θ

1A1
(u8) = {u3, u8, u9, u11, u16};

T θ
1A1

(u9) = {u3, u8, u9, u10, u11, u13,

u14, u17, u20};
T θ

1A1
(u10) = {u1, u9, u10, u11, u12, u13, u14,

u15, u16, u17, u18, u19, u20}
T θ

1A1
(u11) = {u8, u9, u10, u11, u12, u19, u20};

T θ
1A1

(u12) = {u7, u10, u11, u12, u13, u14,

u15, u18, u20};
T θ

1A1
(u13) = {u7, u9, u10, u12, u13};

T θ
1A1

(u14) = {u7, u9, u10, u14, u15, u16, u18};
T θ

1A1
(u15) = {u1, u10, u12, u14, u16,

u17, u18, u19, u20};
T θ

1A1
(u16) = {u8, u10, u14, u15, u16, u17, u18};

T θ
1A1

(u17) = {u9, u10, u15, u16, u17, u18,

u19, u20};
T θ

1A1
(u18) = {u1, u10, u12, u14, u15, u16,

u17, u18, u19};
T θ

1A1
(u19) = {u7, u10, u11, u15, u17, u18, u19, u20};

T θ
1A1

(u20) = {u10, u11, u12, u15, u17, u19, u20}.

Moreover, we consider the approach presented in
[10] to obtain the following classification results:

[u1]A1 = {u1, u3, u4, u6, u7, u10, u15,

u16, u18, u19};
[u2]A1 = {u2}; [u3]A1 = {u1, u3, u6, u8, u9};
[u4]A1 = {u4};
[u5]A1 = {u5}; [u6]A1 = {u6, u7};
[u7]A1 = {u6, u7, u12, u13, u14, u19, u20};
[u8]A1 = {u3, u8, u9, u11, u16, u17};
[u9]A1 = {u3, u8, u9, u10, u11, u13,

u14, u17, u20};
[u10]A1 = {u1, u9, u10, u11, u12, u13, u14,

u15, u16, u17, u18, u19};
[u11]A1 = {u8, u9, u10, u11, u12, u13, u14,

u19, u20};
[u12]A1 = {u7, u10, u11, u12, u13, u14, u15,

u18, u20};
[u13]A1 = {u7, u9, u10, u11, u12, u13};
[u14]A1 = {u7, u9, u10, u11, u14, u15, u16, u18};
[u15]A1 = {u1, u10, u12, u14, u16, u17,

u18, u19, u20};
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[u16]A1 = {u1, u8, u10, u14, u15, u16, u17, u18};
[u17]A1 = {u8, u9, u10, u15, u16, u17, u18,

u19, u20};
[u18]A1 = {u1, u10, u12, u14, u15, u16, u17,

u18, u19};
[u19]A1 = {u1, u7, u10, u11, u15, u17,

u18, u19, u20};
[u20]A1 = {u7, u11, u12, u15, u17, u19, u20}.

From the above results, we can see that the cluster-
ing method and the method proposed in article [10]
are applications of the intuitionistic fuzzy similarity
formula of different schemes for clustering, and the
clustering results have little difference, which shows
that this method is effective. Moreover, although our
method is effective compared with the traditional
fuzzy clustering method, our method does not have
a significant advantage in computational complexity.
When the number of objects and attributes of the data

Fig. 1. The results of α0.6
lB

, ρ0.6
lB

.

set exceeds a certain number, the proposed method
appears to have no advantage.

6. Numerical calculation

In the next, in order to verify and test the validity
and effectiveness of the given uncertainty measure,
numerical experiments are performed on different
intuitionistic fuzzy decision tables. The intuitionistic
fuzzy decision table is represented in Table 1.

Let θ = 0.6, A2 = {a1, a2, a3, a4, a5, a6, a7, a8},
A2 ⊆ A1. There are six kinds of similarity degree
between two intuitionistic fuzzy sets A1, A2 on
U. We can calculate the similarity degree between
any two IFs after computing the similarity degree;
we can work out a θ-similarity class according to
Definition 3. Finally, according to Definitions 6, 7
and 8, we can work out the accuracy and rough-
ness, θ-conditional entropy and θ-rough decision
entropy. The results of the accuracy and roughness,

Fig. 2. The results of H0.6
lS

(d|B) and DE0.6
l

(B).
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Fig. 3. The results based on the first and second similarity degrees.

θ-conditional entropy and θ-rough decision entropy
based on the above six similarity degrees can be
depicted in the following.

From Figs. 1 and 2, we can know that the accuracy
is increasing and the roughness is decreasing when
the similarity degree is changing from the first to
the fifth. Also, the θ-condition and rough decision
entropy are decreasing when the similarity degree
is changing from the first to the fifth apart from
the sixth. The minimum θ-condition entropy and
θ-rough decision entropy can be acquired by using
the fifth similarity degree. This is very consistent
with the reality of life through the above numerical
experiments, which can verify the validity and
correctness of our definition.

In the next section, we will compare the changes
of the accuracy, roughness, θ-conditional entropy
and θ-rough decision entropy with a different sim-
ilarity rate θ. The following pictures represent
the results of six different similarity degrees. Let
A2 = {a1, a2, a3, a4, a5, a6, a7, a8} be the condition
attribute set; the results are shown in Figs. 3, 4, and 5.

Fig. 4. The results based on the third and fourth similarity degrees.

We can obtain that the accuracies all are decreasing
as the similarity rate θ decreases; the roughness, θ-
conditional entropies and θ-rough decision entropies
all are decreasing with the similarity rate θ decreas-
ing. Furthermore, the second, third and fourth
similarity degrees are similar. If we observe the pic-
tures carefully, we will find that the accuracies and
roughness are the same when θ = 0.65 and θ =
0.7 based on the fifth similarity degree, but their
θ-conditional entropies and θ-rough decisions are dif-
ferent. Thus, we can know that the new measures are
superior, and the differences are quite bvious when
θ took different values. Additionally, the fifth clas-
sification accuracy is the highest based on the same
similarity rates. Through comparing the changes of
the accuracy, roughness, θ-conditional entropy and
θ-rough decision entropy with the different similar-
ity rates θ, we can obtain the correctness of our
definition more closely, so that we can provide an
effective method for the division of the intuition-
istic fuzzy information system and the uncertainty
measurement.
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Fig. 5. The results based on the fifth and sixth similarity degrees.

7. Conclusions

In this paper, six similarity degrees of intuitionis-
tic fuzzy sets were considered in order to measure
the uncertainty of the intuitionistic fuzzy decision
table. Also, we have given new classification methods
based on different similarity degrees in this infor-
mation table. Furthermore, we discussed the upper
approximation and lower approximation of a given
set and investigated their properties in an intuitionis-
tic fuzzy table. In addition, we proposed the extended
θ-conditional entropy and θ-rough decision entropy
in an intuitionistic fuzzy decision table with respect
to similarity measures of intuitionistic fuzzy values.
What’s more, we deeply explored their properties.
Finally, we compared the accuracies, roughness, θ-
conditional entropies and θ-rough decision entropies
based on different similarity measures and similarity
rates by conducting the experiments. The classical
decision classes are used in intuitionistic fuzzy deci-
sion tables and the issues about fuzzy or intuitionistic
fuzzy decision classes will be our next works.
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